
Complexity of Approximating Closest Substring
Problems

Patricia A. Evans1 and Andrew D. Smith1,2

1 University of New Brunswick, P.O. Box 4400, Fredericton N.B., E3B 5A3, Canada
pevans@unb.ca

2 Ontario Cancer Institute, University Health Network, Suite 703
620 University Avenue, Toronto, Ontario, M5G 2M9 Canada

fax: +1-506-453-3566
asmith@uhnres.utoronto.ca

Abstract. The closest substring problem, where a short string
is sought that minimizes the number of mismatches between it and
each of a given set of strings, is a minimization problem with a
polynomial time approximation scheme [6]. In this paper, both this
problem and its maximization complement, where instead the number
of matches is maximized, are examined and bounds on their hardness
of approximation are proved. Related problems differing only in their
objective functions, seeking either to maximize the number of strings
covered by the substring or maximize the length of the substring, are
also examined and bounds on their approximability proved. For this
last problem of length maximization, the approximation bound of 2 is
proved to be tight by presenting a 2-approximation algorithm.

Keywords: Approximation algorithms; Hardness of approximation;
Closest Substring

1 Introduction

Given a set F of strings, the closest substring problem seeks to find a string
C of a desired length l that minimizes the maximum distance from C to a sub-
string in each member of F . We call such a short string C a center for F . The
corresponding substrings from each string in F are the occurrences of C. If all
strings in F are the same length n, and the center is also to be of length n, then
this special case of the problem is known as closest string. We examine the
complexity of approximating three problems related to closest substring with
different objective functions. A center is considered to be optimal in the context
of the problem under discussion, in that it either maximized or minimizes the
problem’s objective function. This examination of the problems’ approximability
with respect to their differing objective functions reveals interesting differences
between the optimization goals.

In [6], a polynomial time approximation scheme (PTAS) is given for closest
substring that has a performance ratio of 1 + 1

2r−1 + ε, for any 1 ≤ r ≤ m
where m = |F|, and ε > 0.

A. Lingas and B.J. Nilsson (Eds.): FCT 2003, LNCS 2751, pp. 210–221, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Complexity of Approximating Closest Substring Problems 211

While closest substring minimizes the number of mismatches, max clos-
est substring maximizes the number of matches. We show that the max clos-
est substring problem cannot be approximated in polynomial time with ratio
better than (log m)/4, unless P=NP. As the maximization complement of the
closest substring problem, its reduction can also be applied to closest sub-
string. This application produces a similarly complementary result indicating
the necessity of the 1

O(m) term in the PTAS [6]. While the hard ratio for closest
substring disappears asymptotically when m approaches infinity (as is to be
expected given the PTAS [6]), it indicates a connection between the objective
function and the number of strings given as input. This result supports the posi-
tion that the term 1

O(m) in the PTAS performance ratio cannot be significantly
improved by a polynomial time algorithm.

In [8], Sagot presents an exponential exact algorithm for the decision problem
version of closest substring, also known as common approximate sub-
string. Sagot also extends the problem to quorums, finding strings that are
approximately present in at least a specified number of the input strings. This
quorum size can be maximized as an alternate objective function, producing the
maximum coverage approximate substring problem. A restricted version
of this problem was examined in [7], and erroneously claimed to be as hard to
approximate as clique. We give a reduction from the maximum coverage ver-
sion of set cover, showing that the problem is hard to approximate within
e/(e − 1) − ε (where e is the base of the natural logarithm) for any ε > 0.

The longest common approximate substring problem seeks to maxi-
mize the length of a center string that is within some specified distance d from
every occurrence. We give a 2-approximation algorithm for this problem and
show that 2 is optimal unless P=NP.

2 Preliminary Definitions

Definition 1. Let x be an instance of optimization problem Π with optimal
solution opt(x). Let A be an algorithm solving Π, and A(x) the solution value
produced by A for x. The performance ratio of A with respect to x is

max
{

A(x)
opt(x)

,
opt(x)
A(x)

}
.

A is a ρ-approximation algorithm if and only if A always returns a solution with
performance ratio less than or equal to ρ.

Definition 2. Let Π and Π ′ be two minimization problems. A gap-preserving
reduction (GP -reduction, ≤GP) from Π to Π ′ with parameters (c, ρ),(c′, ρ′) is a
polynomial-time algorithm f . For each instance I of Π, f produces an instance
I ′ = f(I) of Π ′. The optima of I and I ′, say opt(I) and opt(I ′) respectively,
satisfy the following properties:

212 P.A. Evans and A.D. Smith

opt(I) ≤ c ⇒ opt(I ′) ≤ c′ ,

opt(I) > cρ ⇒ opt(I ′) > c′ρ′,

where (c, ρ) and (c′, ρ′) are functions of |I| and |I ′| respectively, and ρ, ρ′ > 1.

Observe that the above definition of gap preserving reduction specifically refers
to minimization problems, but can easily be adapted for maximization problems.
Although it is implied by the name, GP -reductions do not require the size of
the gap to be preserved, only that some gap remains [1].

We now formally specify the problems treated in this paper. All of these can
be seen as variations on the closest substring problem. Note that dH(x, y)
represents the number of mismatches, or Hamming distance, between two strings
x and y of equal length |x| = |y|.

max closest substring

Instance: A set F = {S1, . . . , Sm} of strings over alphabet Σ such that
max1≤i≤m |Si| = n, integer l, (1 ≤ l ≤ n).

Question: Maximize mini(l − dH(C, si)), such that C ∈ Σl and si is a
substring of Si, (1 ≤ i ≤ m).

maximum coverage approximate substring

Instance: A set F = {S1, . . . , Sm} of strings over alphabet Σ such that
max1≤i≤m |Si| = n, integers d and l, (1 ≤ d < l ≤ n).

Question: Maximize |F ′|, F ′ ⊆ F , such that for some C ∈ Σl and for all
Si ∈ F ′, there exists a substring si of Si such that dH(C, si) ≤ d.

longest common approximate substring

Instance: A set F = {S1, . . . , Sm} of strings over alphabet Σ such that
max1≤i≤m |Si| = n, integer d, (1 ≤ d < n).

Question: Maximize l = |C|, C ∈ Σ∗, such that dH(C, si) ≤ d and si is a
substring of Si, (1 ≤ i ≤ m).

Throughout this paper, when discussing different problems the values of d, l
and m may refer to either the optimal values of objective functions or the values
specified as part of the input. These symbols are used in accordance with their
use in the formal statement of whatever problem is being discussed.

3 Max Closest Substring

3.1 Hardness of Approximating Max Closest Substring

In this section we use a gap preserving reduction from set cover to show
inapproximability for max closest substring. Lund and Yannakakis [2], with
a reduction from label cover to set cover, showed that set cover could
not be approximated in polynomial time with performance ratio better than

Complexity of Approximating Closest Substring Problems 213

(log |B|)/4 (where B is the base set) unless NP = DTIME(2poly(log n)). A result
of Raz and Safra [3] indirectly strengthened the conjecture; set cover is now
known to be NP-hard to approximate with ratio better than (log |B|)/4.

set cover

Instance: A set B of elements to be covered and a collection of sets L such
that Li ⊆ B, (1 ≤ i ≤ |L|).

Question: Minimize |R|, R ⊆ L, such that ∪|R|
j=1Rj = B.

Let I = 〈B,L〉 be an instance of set cover. The reduction constructs, in
polynomial time, a corresponding instance I ′ = 〈F , l〉 of max closest sub-
string. For all ρ > 1, there exists a ρ′ > 1 such that a solution for I with a
ratio of ρ can be obtained in polynomial time from a solution to I ′ with ratio ρ′.

The Alphabet. The strings of F are composed of characters from the alphabet
Σ = Σ1 ∪Σ2. The characters of Σ1 are referred to as set characters, and identify
sets in L. The characters of Σ2 are referred to as element characters and are in
one-to-one correspondence with elements of the base set B.

Σ1 = {pi : 1 ≤ i ≤ |L|} ,

Σ2 = {ui : 1 ≤ i ≤ |B|} .

Substring Gadgets. The strings of F are made up of two types of substring
gadgets. We use the function f , defined below, to ensure that the substring
gadgets are sufficiently large. The gadgets are defined as follows:

Subset Selectors: 〈set(i)〉 = p
f(|B|)
i

Separators: 〈separator(j)〉 = u
f(|B|)
j

The Reduction. The string set F contains |B| strings, corresponding to the
elements of B. For each j ∈ B, let Lj ⊆ L be the subfamily of sets containing the
element j. With product notation referring to concatenation, define the string

Sj =
∏

q∈Lj

〈set(q)〉〈separator(j)〉 .

The function f : N �→ N must be defined. It is necessary for f to have the
property that for all positive integers x < |B|,

⌊
f(|B|)

x

⌋
>

⌊
f(|B|)
x + 1

⌋
.

It is straightforward to check that f(y) = y2 has this property. The maximum
length of any member of F is n = 2|L||B|2, the size of F is m = |B|, the length
of the center is l = f(|B|) = |B|2 and the alphabet size is |Σ| = |L|+ |B|. We call
any partition of F whose equivalence relation is the property of having an exact

214 P.A. Evans and A.D. Smith

common substring a substring induced partition. For any two occurrences s, s′ of
a center, we call s and s′ disjoint if for all 1 ≤ q ≤ |s|, s[q] �= s′[q]. Observe that
the maximum distance to an optimal center, for any set of disjoint occurrences,
increases with the size of the set.

Lemma 1. Let F be a set of occurrences of an optimal center C such that |F | =
k. If for each pair s, s′ ∈ F , dH(s, s′) = l, then for every s ∈ F , l − dH(C, s) ≥

l/k�. Also, there is at least one s ∈ F such that l − dH(C, s) =
l/k�.
Proof. There are l total positions and for any position p, there is a unique s ∈ F
such that s[p] = C[p]. If some s ∈ F had l − dH(C, s) <
l/k�, then the center C
would not be optimal, as a better center can be constructed by taking position
symbols evenly from the k occurrences. If all s ∈ F have l − dh(C, s) >
l/k�,
then the total number of matches exceeds l, some pair of matches would have
the same position, and thus some pair s, s′ ∈ F have dH(s, s′) < l. �

The significance of our definition for f is apparent from the above proof. It is
essential that, under the premise of Lemma 1, values of k (the number of distinct
occurrences of a center) can be distinguished based on the maximum distance
from any occurrence to the optimal center.

Lemma 2. set cover ≤GP max closest substring.

Proof. Suppose the optimal cover R for 〈B,L〉 has size less than or equal to c.
Construct string C of length |B|2 as follows. To the positions in C, assign in equal
amounts the set characters representing members of R. Then C is a center for F
with maximum similarity
|B|2/c�.

Suppose |R| > c. Let F ′ be the largest subset of F having a substring induced
c-partition. By the reduction, since |R| > c, F ′ �= F . Let S be any string in F\F ′.
By Lemma 1, any optimal center for F ′ must have minimum similarity
|B|2/c�,
and therefore has at least
|B|2/c� characters from a substring of every string in
F ′. But the occurrence in S is disjoint from the occurrences in F ′, forcing the
optimal center to match an equal number of positions in more than c disjoint
occurrences. Hence, also by Lemma 1, the optimal center matches no more than

|B|2/(c + 1)� <
|B|2/c� characters in some occurrence. The gap preserving
property of the reduction follows since
|B|2/c� is a decreasing function of c. �

Theorem 1. max closest substring is not approximable within (log m)/4
in polynomial time unless P=NP.

Proof. The theorem follows from the fact that the NP-hard ratio for max clos-
est substring remains identical to that of the source problem set cover. �

As max closest substring is the complementary maximization version
of closest substring, and there is a bijection between feasible solutions to
the complementary problems that preserves the order of solution quality, this
reduction also applies to closest substring. The form of the hard performance
ratio for closest substring provides evidence that the two separate sources
of error, 1/O(m) and ε, are necessary in the PTAS of [6].

Complexity of Approximating Closest Substring Problems 215

Theorem 2. closest substring cannot be approximated with performance
ratio 1 + 1

ω(m) in polynomial time unless P=NP.

Proof. Since the NP-hard ratio for set cover is ρ = (1/4) log |B|, the NP-hard
ratio obtained for closest substring in the above reduction is

ρ′ = cρ−1
cρ−ρ

= 1 +
(

ρ−1
ρ

)
·
(

1
c−1

)

≥ 1 + 1
O(m) .

�

3.2 An Approximation Algorithm for Max Closest Substring

The preceding subsection showed that max closest substring cannot be ap-
proximated within (log m)/4. Here, we show that this bound is within a factor
of 4 · |Σ| of being tight, by presenting an approximation algorithm that achieves
a bound of |Σ| log m for max closest substring.

Due to the complementary relationship between max closest substring
and closest substring, we start by presenting a greedy algorithm for closest
string. The greedy nature of the algorithm is due to the fact that it commits to a
local improvement at each iteration. The algorithm also uses a lazy strategy that
bases each decision on information obtained by examining a restricted portion
of the input. This is the most naive form of local search; the algorithm is not
expected to perform well. The idea of the algorithm is to read the input strings
column by column, and for each column i, assign a character to C[i] before
looking at any column j such that j > i. Algorithm 1 describes this procedure,
named GreedyAndLazy, in pseudocode.

216 P.A. Evans and A.D. Smith

Lemma 3. The greedy and lazy algorithm for closest string produces a cen-
ter string with radius within a factor of m(1 − 1

|Σ|) of the optimal radius.

Proof. Consider the number of iterations required to guarantee that each S ∈ F
matches C in at least one position. Let Ji be the set of strings that do not match
any position of C after the ith iteration, then

Ji+1 ≤
(|Σ| − 1

|Σ|
)

Ji ≤ exp(−1/|Σ|)Ji .

This is because the algorithm always selects the column majority character of
those strings in Ji. Let x be the number of iterations required before all members
of F match C in at least one position. A bound on the value of x is given by the
following inequality:

1
m

> exp
(

− x

|Σ|
)

.

Hence, for any strictly positive ε, after x = |Σ| lnm+ε iterations, each member of
F matches C in at least one position. After the final iteration, the total distance
from C to any member of F is at most n−n/(|Σ| lnm). The optimal distance is
at least n/m, otherwise some positions are identical in F (and thus should not
be considered). Therefore the performance ratio of GreedyAndLazy is

n − n/(|Σ| lnm)
n/m

≤ m

(
1 − 1

|Σ|
)

.

�
The running time of GreedyAndLazy, for m sequences of length n, is

O(|Σ|mn2).
Now consider applying GreedyAndLazy to the max closest substring

problem by selecting an arbitrary set of substrings of length l to reduce the
problem to a max closest string problem. The number of matches between
any string in F and the constructed center will be at least Ω(l/(|Σ| log m)).

Corollary 1. GreedyAndLazy is a O(|Σ| log m)-approximation algorithm for
max closest substring.

Since max closest substring is hard to approximate with ratio better than
(log m)/4, this approximation algorithm is within 4 · |Σ| of optimal.

4 Maximum Coverage Approximate Substring

The incorrect reduction given in [7] claimed an NP-hard ratio of O(nε), ε = 1
4 ,

for maximum coverage approximate substring when l = n and |Σ| = 2. Its
error resulted from applying Theorem 5 of [5], proven only for alphabet size at
least three, to binary strings. Hardness of approximation for the general problem
is shown here by a reduction from maximum coverage.

Complexity of Approximating Closest Substring Problems 217

maximum coverage

Instance: A set B of elements to be covered and a collection of sets L such
that Li ⊆ B, (1 ≤ i ≤ |L|), a positive integer k.

Question: Maximize |B|, B ⊆ B, such that B = ∪k
j=1Lj , where Lj ∈ L.

Given an instance 〈B, L, k〉 of maximum coverage, we construct an in-
stance 〈F , l, d〉 of maximum coverage approximate substring where m =
|B|, l = k, d = k − 1 and n ≤ k|L|. The construction of F is similar to the
construction used when reducing from set cover to closest substring in
Section 3; unnecessary parts are removed.

The Alphabet. The strings of F are composed of characters from the alphabet
Σ. The characters of Σ correspond to the sets Li ∈ L that can be part of a
cover, so Σ = {xi : 1 ≤ i ≤ |L|}.

The Reduction. The string set F = {S1, . . . , S|B|} will contain strings corre-
sponding to the elements of B. To construct these strings for each j ∈ B, let
Lj ⊆ L be the subfamily of sets containing the element j. For each j ∈ B, define

Sj =
∏

xi∈Lj

xk
i .

Set d = k − 1 and l = k. We seek to maximize the number of strings in F
containing occurrences of some center C.

Lemma 4. maximum coverage ≤GP maximum coverage approximate
substring.

Proof. Suppose 〈L,B, k〉 is an instance of maximum coverage with a solution
set R ⊂ L, such that |R| = k and R covers b ≤ |B| elements. Then there is
a center C for F of length l = k that has distance at most d = k − 1 from
a substring of b strings in F . Let the k positions in C be assigned characters
representing the k sets in the cover, i.e. for each xi ∈ R, there is a position p
such that C[p] = xi. All b members of F corresponding to those covered elements
in B contain a substring matching at least one character in C, and mismatch at
most k − 1 characters. Suppose one cannot obtain a k cover with ratio better
than ρ. Then one cannot obtain a center for F that occurs in more than b/ρ
strings of F , so the hard ratio is ρ′ = b

b/ρ = ρ. �

Theorem 3. maximum coverage approximate substring cannot be ap-
proximated with performance ratio e/(e − 1) − ε, for any ε > 0, unless P=NP.

Proof. It was shown in [4] that the NP-hard ratio for maximum coverage is
e/(e − 1) − ε. This result combined with Lemma 4 proves the theorem. �

Note that this reduction shows hardness for the general version of the prob-
lem, and leaves open the restricted case of l = n with |Σ| = 2. No approximation
algorithms with nontrivial ratios are known.

218 P.A. Evans and A.D. Smith

5 Longest Common Approximate Substring

The longest common approximate substring problem seeks to maximize
the length of a center that is within a given distance from each string in the
problem instance. That a feasible solution always exists can be seen by consider-
ing the case of a single character, since the problem is defined with d > 0. This
problem is useful in finding seeds of high similarity for sequence comparisons.

Here we show that a simple algorithm always produces a valid center that is
at least half the optimal length. A valid center is any string that has distance at
most d from at least one substring of each string in F . The algorithm simply eval-
uates each substring of members of F and tests them as centers. The following
procedure Extend accomplishes this with a time complexity of Θ(m2n3).

Theorem 4. Extend is a 2-approximation algorithm for longest common
approximate substring.

Proof. Let C be the optimal center for F . For each Si ∈ F , let si be the oc-
currence of C from Si; observe that |si| = |C|. Define si,1 as the substring of si

consisting of the first |C|/2 positions of si, and si,2 as the substring consisting
of the remaining positions. Similarly, define C1 and C2 as the first and last half
of C. For x ∈ {1, 2}, let cx be equal to the string si,x that satisfies

dH(si,x, Cx) ≤ min
sj,x,j �=i

dH(sj,x, Cx) .

Define c such that

c =

{
c1 if dH(c1, C1) ≤ dH(c2, C2),

c2 otherwise.

Note that dH(c, Cx) ≤ d/2, for some x ∈ {1, 2}. Suppose, for contradiction, that
c is not a valid center. Assume, without loss of generality, that c = si,1 for some
i. Then there is some si,1 such that dH(c, si,1) > d. Since dH(c, C1) = d/2 − y
for some 1 ≤ y ≤ d/2, by the triangle inequality dH(si,1, C1) ≥ d/2 + y + 1. This
implies that dH(si,2, C2) ≤ d/2 − y − 1 < dH(c, C1), contradicting the definition

Complexity of Approximating Closest Substring Problems 219

of c. Hence c is a valid center. Since c is a substring of one of the input strings,
it will be found by Extend. It is half the length of the optimal length center C,
so a center will be found that is at least half the length of the longest center. �

The performance ratio of 2 is optimal unless P=NP. We use a transformation
from the vertex cover decision problem that introduces a gap in the objective
function.

vertex cover

Instance: A graph G = (V, E) and a positive integer k.
Question: Does G have a vertex cover of size at most k, i.e., a set of vertices

V ′ ⊆ V , |V ′| ≤ k, such that for each edge (u, v) ∈ E, at least one
of u and v belongs to V ′?

Suppose for some graph G, we seek to determine if G contains a vertex cover
of size k. We construct an instance of longest common approximate sub-
string with |E| strings corresponding to the edges of G. The intuition behind
the reduction is that an occurrence of the center in each string corresponds to
the occurrence of a cover vertex in the corresponding edge. Before giving values
of n and d, we describe the gadgets used in the reduction.

The Alphabet. The string alphabet is Σ = Σ1 ∪ Σ2 ∪ {A}. We refer to these
as vertex characters (Σ1), unique characters (Σ2), and the alignment character
(A), where Σ1 = {vi : 1 ≤ i ≤ |V |} and Σ2 = {uij : (i, j) ∈ E}.

Substring Gadgets. We next describe the two “high level” component sub-
strings used in the construction. The function f is any arbitrarily large polyno-
mial function of |G|.
Vertex Selectors: 〈vertex(x, i, j, z)〉 = Af(k)u

(z−1)
ij vxu

(k−z)
ij Af(k)

Separators: 〈separator(i, j)〉 = u
3f(k)
ij

The Reduction. We construct F as follows. For any edge (i, j) ∈ E:

Sij =
∏

1≤z≤k

〈vertex(i, i, j, z)〉〈separator(i, j)〉〈vertex(j, i, j, z)〉〈separator(i, j)〉

The length of each string is then n = k(10f(k) + 2k). The threshold distance is
d = k − 1.

Theorem 5. longest common approximate substring cannot be approxi-
mated in polynomial time with performance ratio better than 2−ε, for any ε > 0,
unless P=NP.

Proof. For any set of strings F so constructed, there is an exact common sub-
string of length f(k) corresponding to the f(k) repeats of the alignment character
A. Suppose there is a size k cover for the source instance of vertex cover.
Construct a center C for F as follows. Assign the alignment character A to the

220 P.A. Evans and A.D. Smith

first f(k) positions in C. To positions f(k)+1 through f(k)+k, assign the char-
acters corresponding to the vertices in the vertex cover. These may be assigned
in any order. Finally, assign the alignment character A to the remaining f(k)
positions of C. Each string in F contains a substring that matches 2f(k) + 1
positions in C, so C is a valid center.

If there is no k cover for the source instance of vertex cover, then for any
length f(k)+k string there will be some S ∈ F that mismatches k positions. As f
can be any arbitrarily large polynomial function of k, the NP-hard performance
ratio is

2f(k) + k

f(k) + k
≥ 2 − ε ,

for any constant ε > 0.
To show hardness for 2 − ε, where ε is not a constant (it can be a function of

l), consider that we can manipulate the hard ratio into the form

2 − k

f(k) + k
.

Since l is the optimal length and l = 2f(k) + k, substitute f(k) = l/2 − k/2
in the performance ratio:

2 − k

l/2 − k/2 + k
= 2 − 2k

l + k
.

Suppose we select l = kc during the reduction, where c is any arbitrarily large
constant. Then we have shown a hard performance ratio of

2 − 2l1/c

l + l1/c
≥ 2 − 2l1/c

l
= 2 − 2

l(c−1)/c
= 2

(
1 − 1

l(c−1)/c

)
.

�

6 Conclusion

These results show that, unless P=NP, the max closest substring, maximum
coverage approximate substring, and longest common approximate
substring problems all have limitations on their approximability.

The relationships between the different objective functions produce an in-
teresting interplay between the approximability of minimizing d with l fixed,
maximizing l with d fixed, and maximizing their difference l − d. While this
last variant, the max closest substring problem, has a hard performance
ratio directly related to the number of strings m, the two variants that fix one
parameter and attempt to maximize the difference by optimizing the other pa-
rameter have lower ratios of approximability. It is NP-hard to approximate max
closest substring with a performance ratio better than (log m)/4, and we

Complexity of Approximating Closest Substring Problems 221

have provided a (|Σ| log m)-approximation. For longest common approxi-
mate substring, with d fixed, the length can be approximately maximized
with a ratio of 2, and it is NP-hard to approximate for any smaller ratio. The
best ratio of approximation is for closest substring, where l is fixed and d is
minimized; the PTAS of [6] achieves a ratio of (1+ 1

2r−1 + ε), for any 1 ≤ r ≤ m,
and we have now shown that unless P=NP it cannot be approximated closer
than 1 + 1

O(m) .
For the quorum variant of closest substring, where the number of strings

covered is instead the objective function to be maximized, then it is NP-hard
to obtain a performance ratio better than e/(e − 1). The restricted variant with
l = n and |Σ| = 2 once thought to be proven hard by [7] is still open, without
either hardness or a nontrivial approximation algorithm.

Our reductions use alphabets whose size will increase. The complexity of
variants of these new problems where the alphabet size is treated as a constant
is open, except as they relate to known results for constant alphabets [6,7].

References

1. Sanjeev Arora. Probabilistic checking of proofs and the hardness of approximation
problems. PhD thesis, UC Berkeley, 1994.

2. Carsten Lund and Mihalis Yannakakis. On the hardness of approximating mini-
mization problems. Journal of the ACM, 41(5), 1994.

3. Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP. In Proceedings of the
Annual ACM Symposium on Theory of Computing, 475–484, 1997.

4. Uriel Feige. A threshold of log n for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

5. J. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selec-
tion problems. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms, 633–642. ACM Press, 1999.

6. Ming Li, Bin Ma, and Lusheng Wang. On the closest string and substring problems.
Journal of the ACM, 49(2):157–171, 2002.

7. Bin Ma. A polynomial time approximation scheme for the closest substring prob-
lem. In Combinatorial Pattern Matching (CPM 2000), Lecture Notes in Computer
Science 1848, 99–107. Springer, 2000.

8. Marie-France Sagot. Spelling approximate repeated or common motifs using a suffix
tree. In LATIN’98, Lecture Notes in Computer Science 1380, 374–390. Springer,
1998.

	Introduction
	Preliminary Definitions
	Max Closest Substring
	Hardness of Approximating Max Closest Substring
	An Approximation Algorithm for Max Closest Substring

	Maximum Coverage Approximate Substring
	Longest Common Approximate Substring
	Conclusion

